July 7, 2021

Launch Methanation Verification Test in FY2021

Tokyo Gas Co., Ltd.

Tokyo Gas Co., Ltd. (President: UCHIDA Takashi; "Tokyo Gas") will begin the verification test (verification test) for methanation, a city gas decarbonization technology, in fiscal year 2021 to realize carbon neutrality and a decarbonized society in 2050.

Methanation refers to the synthesizing of methane using hydrogen and CO2. It is positioned as one promising technology for the decarbonization of city gas in the future. By producing city gas from synthesized methane, which in turn is derived from CO2free hydrogen and CO2, the existing city gas infrastructure and devices, which include equipment that uses gas, can be used effectively. This will make it possible to curb additional social costs and concurrently achieve the decarbonization of city gas.

The goal of this verification test is to obtain a series of technologies and knowhow spanning from renewable energy-derived power procurement to synthetic methane production and utilization, grasp the actual values and issues for water electrolysis devices and methanation equipment, and learn about the efficiency of the overall system. Regarding methanation, in addition to corroborating Sabatier, an existing technology, Tokyo Gas plans to collaborate with several institutions to develop innovative technologies, including Hybrid Sabatier aiming for further efficiency, a PEM*1 CO2 reduction technology and bioreactor, which are expected to reduce facilities cost. Going forward, Tokyo Gas will examine a local production for local consumption model for regional carbon neutrality, and corroborate developed technologies. This will contribute to the building of a larger-scale verification test and supply chain at Tokyo Gas LNG terminals.

<Overview of this verification test>

Location: Tokyo Gas site at Tsurumi-ku, Yokohama, Kanagawa (about 2100m²)

	Performance evaluation of the ITM Power PEM water electrolysis
Water	device and the acquisition of knowledge for the system
electrolysis	configuration of this device
dovico	Performance evaluation and identification of issues for a low-cost
uevice	electrolysis device that is equipped with a cell stack proprietarily
	developed by Tokyo Gas
Mathanation	Performance evaluation (methane production capacity, exhaust
device	heat volume, etc.) and identification of issues of the existing
device	methanation device
	• Evaluation of innovative technologies related to methanation

CO2 separation	 Basic research and technology evaluation of new technologies
and capture	(DAC ^{*2} , etc.) related to the separation and capture of CO2
Overall system	 Gain technologies and knowhow on the supply-demand balance from fluctuating renewable energy sources to the manufacturing of synthetic methane, and acquire knowhow on the efficiency (≒feasibility) of the entire system

< Overview of the Methanation Verification Test Plan>

<Schedule>

							Methanat	ion	Water electrolysis	CO2 capture
FY2021				FY2022				Period going forward		
April	July	October	January	April	April July October January					
Prep	aration/ luction	Insta n/tes	llatio st run (Methana March (ation ver 2022 onv	ification t ward)	est	1		
					ITM-brand operations (June 202	d water elect s 2 onward)	rolysis device	8		
					Co (n	ollaborationid-FY202	on with ca 22 onward	rbon ı I)	neutral regior	IS
Proprietarily development of low cost water electrolysis cell stack (early 2020s onward)					onward)					
Cons insta	sider CO2 all CO2 sep	separati paration	on meth device	od from	n combus	stion gas,	develop a	and	Verificatio (mid-2020	n)s onward)
Innc	ovative tec	hnologi	cal devel	opment	related	to metha	nation		Verifica (late-2	ation 020s onward)

*Verification of water electrolysis device equipped with a cell stack proprietarily developed.

<Innovative technological development related to methanation being undertaken by
Tokyo Gas>

Technology		Details					
Methanation	Hybrid Sabatier	Establish a low-temperature Sabatier and hybrid water electrolysis technologies					
	PEMCO ₂ reduction	Establish methane production technology for low reduction voltage					
	Bioreactor	Search for bacteria for a high reaction speed and improve efficiency					
Low-density CO2 separation and capture		Demonstrate the principle of DAC which uses electrodialysis					

In the Tokyo Gas Group Management Vision, Compass2030, Tokyo Gas promotes the challenge of achieving "Net-Zero CO_2 " and is working to reduce hydrogen production cost and strengthening the development of CO_2 management technology (CCUS^{*5}). Through this development project, Tokyo Gas aims for the further early realization of technological development aimed at the decarbonization of gaseous energy. By taking the lead in realizing "Net-Zero CO_2 ". Tokyo Gas plans to contribute to the government's scheme to "realize a carbon neutral, decarbonized society in 2050."

*1 : Polymer Electrolyte Membrane

*2 : Direct Air Capture

*3 : Carbon dioxide Capture, Utilization and Storage

■Water electrolysis device specifications

Model	HGas3SP
Water	Solid polymer type
electrolysis	
method	
Hydrogen	About 30.9kg/hour
production	
capacity	
Input power	2.0MW
Deekege	40-foot container
Раскаде	Chiller/air blast

Methanation device specifications

Manufacturer	Hitachi Zosen Corporation
Manufacturing capacity	12.5Nm ³ /h-CH ₄
Reaction mode	Multi-Shell & Tube type
Methane	97%-plus (Maximum: 99.8%)
purity	
Heat recovery	70%-plus
efficiency	
	20,000 hours-plus
Catalyst life	(In cases where the gas does not
	contain toxic substances)

